

128K-Word By 16 Bit

CS16LV20493

Revision History

Rev. No.	History	Issue Date	<u>Remark</u>
1.0	Initial issue	Jan.17, 2005	
1.1	Add 48 CSP-6x8mm	Sep. 16, 2005	
1.2	Revise DC characteristics	Apr. 11, 2008	
1.2	Remove 48 Mini BGA 6*8 mm package type	1.1. OF 2010	
1.3	Add 48 Mini BGA 6*7 mm package type	Jul. 05, 2010	

128K-Word By 16 Bit

CS16LV20493

GENERAL DESCRIPTION	1
FEATURES	1
Product Family	1
PIN CONFIGURATION	2
FUNCTIONAL BLOCK DIAGRAM	2
PIN DESCRIPTIONS	3
TRUTH TABLE	4
ABSOLUTE MAXIMUM RATINGS (1)	4
OPERATING RANGE	4
CAPACITANCE ⁽¹⁾ (T _A = 25 [°] C, f = 1.0 MHz)	
DC ELECTRICAL CHARACTERISTICS (T _A = 0°~70°C, V _{CC} = 3.0V)	5
DATA RETENTION CHARACTERISTICS $(T_A = 0^{\circ} \sim 70^{\circ})$	6
AC TEST CONDITIONS	
KEY TO SWITCHING WAVEFORMS	6
LOW V _{CC} DATA RETENTION WAVEFORM (1) (/CE1 Controlled)	7
LOW V _{CC} DATA RETENTION WAVEFORM (2) (CE2 Controlled)	7
AC TEST LOADS AND WAVEFORMS	7
AC ELECTRICAL CHARACTERISTICS (T _A = 0°C ~70°C : V _{CC} =3.0V)	8
SWITCHING WAVEFORMS (READ CYCLE)	8
AC ELECTRICAL CHARACTERISTICS (T _A = 0°C ~70°C : V _C = 3.0V)	.10
SWITCHING WAVEFORMS (WRITE CYCLE)	. 11
ORDER INFORMATION	.13
PACKAGE OUTLINE	.14

128K-Word By 16 Bit

CS16LV20493

GENERAL DESCRIPTION

The CS16LV20493 is a high performance; high speed and super low power CMOS Static Random Access Memory organized as 131,072 words by 16bits and operates from a wide range of 2.7 to 3.6V supply voltage. Advanced CMOS technology and circuit techniques provide both high speed, super low power features and maximum access time of 55/70ns in 3.0V operation. Easy memory expansion is provided by an active LOW chip enable inputs (/CE1, CE2) and active LOW output enable (/OE).

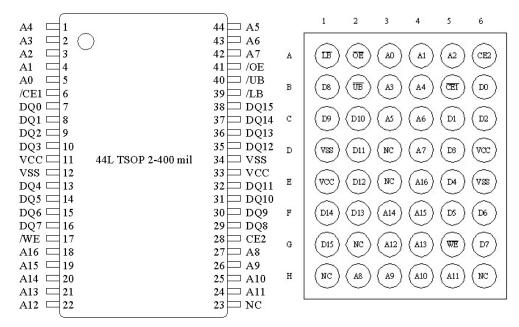
The CS16LV20493 has an automatic power down feature, reducing the power consumption significantly when chip is deselected. The CS16LV20493 is available in JEDEC standard 44-pin TSOP 2 and 48-ball mini_BGA-6x7mm packages.

FEATURES

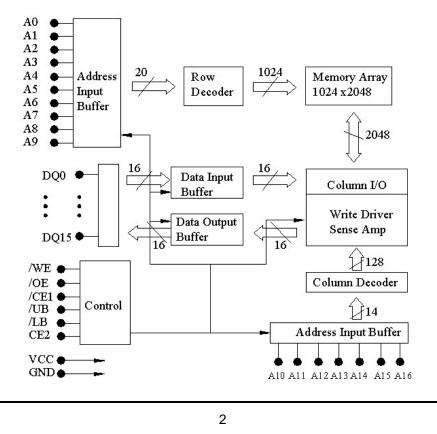
- Wide operation voltage : 2.7 ~ 3.6V
- Ultra-low power consumption :
 - 3mA@1MHz (Max.), Vcc=3.0V.
 - 0.5 uA (Typ.) CMOS standby current
- High speed access time: 55/70ns.
- Automatic power down when chip is deselected.
- Three state outputs and TTL compatible.
- Data retention supply voltage as low as 1.5V.
- Easy expansion with (/CE1, CE2) and /OE options.

Product Family

Part No.	Operating Temp	V _{CC} . Range	Speed (ns)	Standby (Typ.)	Package Type
CS16LV20493	0~70°C	2.7~3.6	55/ 70	0.5uA (V _{CC} = 3.0V)	44 TSOP 2 48 Mini BGA
	-40~85°C	2.7*3.0	55/ 70	0.8uA (V _{CC} = 3.0V)	Dice


Rev. 1.3

128K-Word By 16 Bit


CS16LV20493

PIN CONFIGURATION

48 ball Mini_BGA-6x7mm Top View

FUNCTIONAL BLOCK DIAGRAM

Rev. 1.3

128K-Word By 16 Bit

CS16LV20493

PIN DESCRIPTIONS

Name	Туре	Function
A0 – A16	Input	Address inputs for selecting one of the 131,072 x 16 bit words in the RAM
/CE1, CE2	Input	/CE1 is active LOW and CE2 is active HIGH. Both chip enables must be active when data read from or write to the device. If either chip enable is not active, the device is deselected and in a standby power down mode. The DQ pins will be in high impedance state when the device is deselected.
/WE	Input	The Write enable input is active LOW. It controls read and write operations. With the chip selected, when /WE is HIGH and /OE is LOW, output data will be present on the DQ pins, when /WE is LOW, the data present on the DQ pins will be written into the selected memory location.
/OE	Input	The output enable input is active LOW. If the output enable is active while the chip is selected and the write enable is inactive, data will be present on the DQ pins and they will be enabled. The DQ pins will be in the high impedance state when /OE is inactive.
/LB, /UB	Input	Lower byte and upper byte data input/output control pins.
DQ0~DQ15	I/O	These 16 bi-directional ports are used to read data from or write data into the RAM.
V _{CC}	Power	Power Supply
Gnd	Power	Ground

128K-Word By 16 Bit

CS16LV20493

TRUTH TABLE

MODE	/CE1	CE2	/WE	/OE	/LB	/UB	DQ0~7	DQ8~15	V _{cc} Current	
Standby	Х	L	X	X	Х	X	High Z	High Z		
Standby	Н	Х	Х	Х	Х	Х	T light Z	r ligh Z	I _{CCSB} , I _{CCSB1}	
Output Dischlad			Н	Н	X	X	lliah 7	Lligh 7	I	
Output Disabled		H	Х	Х	Н	Н	High Z	High Z	I _{CC}	
			Н		L	L	D _{OUT}	D _{OUT}	I _{CC}	
Read	L	Н		L	Н	L	High Z	D _{OUT}	I _{CC}	
					L	Н	D _{OUT}	High Z	I _{CC}	
	L				L	L	D _{IN}	D _{IN}	I _{CC}	
Write		Н	L	X	Н	L	Х	D _{IN}	I _{CC}	
					L	Н	D _{IN}	Х	I _{CC}	

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Rating	Unit
V _{TERM}	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
T _{BIAS}	Temperature Under Bias	-40 to +125	OC
T _{STG}	Storage Temperature	-60 to +150	OC
PT	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	25	mA

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0~70°C	2.7V ~3.6V
Industrial	-40~85°C	2.7V ~ 3.6V

1. Overshoot : V_{CC} +2.0V in case of pulse width \leq 20ns.

2. Undershoot : - 2.0V in case of pulse width *≦*20ns.

3. Overshoot and undershoot are sampled, not 100% tested.

128K-Word By 16 Bit

CS16LV20493

CAPACITANCE ⁽¹⁾ (T = 25°C, f = 1.0 MHz)

Symbol	Parameter	Conditions	MAX.	Unit
CIN	Input Capacitance	V _{IN} =0V	6	pF
C _{DQ}	Input/output Capacitance	V _{I/O} =0V	8	pF

This parameter is guaranteed, and not 100% tested.

DC ELECTRICAL CHARACTERISTICS $(T_A = 0^{\circ} c^{-70^{\circ}}, V_{CC} = 3.0^{\circ})$

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{IL}	Guaranteed Input Low Voltage ⁽²⁾	V _{CC} =3.0V	-0.5		0.8	V
V _{IH}	Guaranteed Input High Voltage ⁽²⁾	V _{CC} =3.0V	2.0		Vcc+0.2	V
١ _{١L}	Input Leakage Current	V_{CC} =MAX, V_{IN} =0 to V_{CC}	-1		1	uA
I _{OL}	Output Leakage Current	V_{CC} =MAX, /CE1= V_{Ih} , or /OE= V_{Ih} ,or /WE= V_{IL} V_{IO} =0V to V_{CC}	-1		1	uA
V _{OL}	Output Low Voltage	V _{CC} =MAX, I _{OL} =2.0mA			0.4	V
V _{OH}	Output High Voltage	V _{CC} =MIN, I _{OH} = -1.0mA	2.4			V
I _{CC}	Operating Power Supply Current	/CE1=V _{IL} , I _{DQ} =0mA, F=F _{MAX} =1/ t _{RC}			25	mA
I _{CCSB}	TTL Standby Supply	/CE1=V _{IH} , I _{DQ} =0mA,			1	mA
I _{CCSB1}	CMOS Standby Current	/CE1≧V _{CC} -0.2V, V _{IN} ≧V _{CC} -0.2V or V _{IN} ≦0.2V,		0.5	4	uA

1. Typical characteristics are at $T_A = 25 \degree C$.

2. These are absolute values with respect to device ground and all overshoots due to system or tester notice are included.

3. $Fmax = 1/t_{RC.}$

128K-Word By 16 Bit

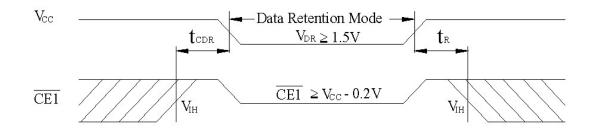
CS16LV20493

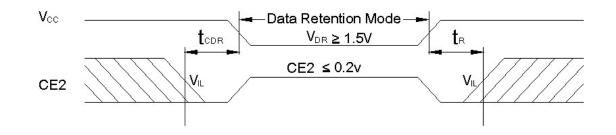
DATA RETENTION CHARACTERISTICS $(T_A = 0^{\circ} - 70^{\circ})$

Name	Parameter	Test Condition	MIN	TYP ⁽¹⁾	MAX	Unit
V _{DR}	V _{CC} for Data Retention	/CE1 \geq V _{CC} -0.2V, V _{IN} \geq V _{CC} -0.2V	1.5			v
		or V _{IN} ≦0.2V	1.5			V
	Data Retention Current	/CE1≧V _{CC} -0.2V, V _{CC} =1.5V				
I _{CCDR}		$V_{IN} \ge V_{CC}$ -0.2V or $V_{IN} \le 0.2V$		0.3	2	uA
T _{CDR}	Chip Deselect to Data Retention Time	Refer to Retention Waveform	0			ns
t _R	Operation Recovery Time		t _{RC} ⁽²⁾			ns

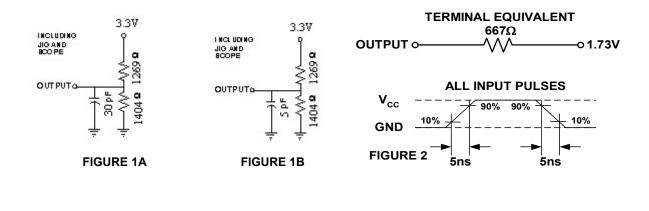
1. $T_A = 25 \,^{\circ}C$, 2. t_{RC} = Read Cycle Time

AC TEST CONDITIONS KEY TO SWITCHING WAVEFORMS


V _{CC} /0V	WAVEFORMS	INPUTS	OUTPUTS		
5ns		MUST BE STEADY	MUST BE STEADY		
013		MOOT BE OTENDT	MOOT BE OTENDT		
0.5Vcc					
		MAY CHANGE FROM H TO L	WILL BE CHANGE FROM H TO L		
See FIGURE					
1A and 1B					
		MAY CHANGE FROM L TO H	WILL BE CHANGE FROM L TO H		
		DON'T CARE ANY CHANGE PERMITTED	CHANGE STATE UNKNOWN		
		DOES NOT APPLY	CENTER LINE IS HIGH IMPEDANCE OFF STATE		
	5ns 0.5Vcc See FIGURE	5ns 0.5Vcc See FIGURE	5ns MUST BE STEADY 0.5Vcc MAY CHANGE FROM H See FIGURE MAY CHANGE FROM H 1A and 1B MAY CHANGE FROM L Image: Comparison of the second		


128K-Word By 16 Bit

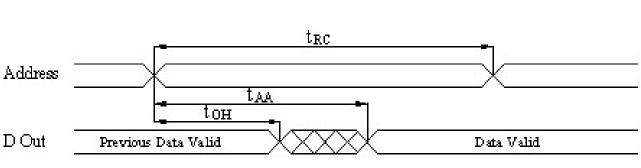
CS16LV20493


LOW V_{cc} DATA RETENTION WAVEFORM (1) (/CE1 Controlled)

LOW V_{cc} DATA RETENTION WAVEFORM (2) (CE2 Controlled)

AC TEST LOADS AND WAVEFORMS

128K-Word By 16 Bit

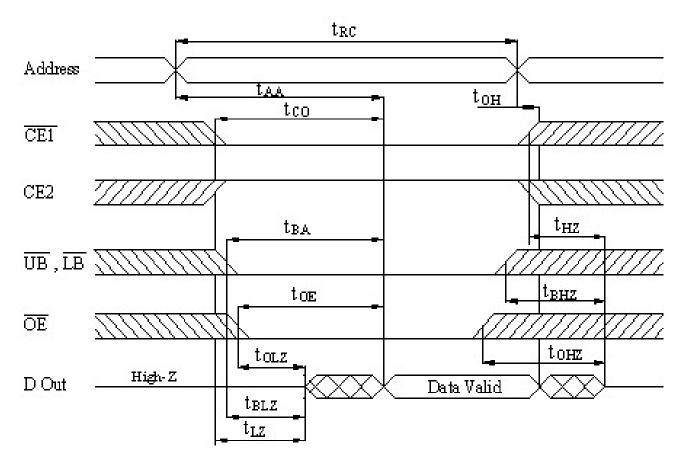

CS16LV20493

AC ELECTRICAL CHARACTERISTICS $(T_A = 0^{\circ} - 70^{\circ} ; V_{CC} = 3.0V)$

JEDEC	Parameter	Description		55	-70		Unit
Name	Name	Description		MAX	MIN	MAX	Unit
t _{AVAX}	t _{RC}	Read Cycle Time	55		70		ns
t _{AVQV}	t _{AA}	Address Access Time		55		70	ns
t _{ELQV}	t _{co}	Chip Select Access Time (/CE1)		55		70	ns
t _{BA}	t _{BA}	Data Byte Control Access Time (/LB, /UB)		55		70	ns
t _{GLQV}	t _{OE}	Output Enable to Output Valid		25		35	ns
t _{ELQX}	t _{LZ}	ChiChip Select to Output Low Z (/CE1)	10		10		ns
t _{BE}	t _{BLZ}	Data Byte Control to Output Low Z (/LB, /UB)	5		5		ns
t _{GLQX}	t _{OLZ}	Output Enable to Output in Low Z	5		5		ns
t _{EHQZ}	t _{HZ}	Chip Deselect to Output in High Z (/CE1)	0	20	0	25	ns
t _{BDO}	t _{BHZ}	Data Byte Control to Output High Z (/LB, /UB)	0	20	0	25	ns
t _{GHQZ}	t _{OHZ}	Output Disable to Output in High Z	0	20	0	25	ns
t _{AXOX}	t _{OH}	Out Disable to Address Change	10		10		ns

< READ CYCLE >

SWITCHING WAVEFORMS (READ CYCLE)


READ CYCLE1

128K-Word By 16 Bit

CS16LV20493

READ CYCLE2

NOTES:

- 1. t_{HZ} and t_{OHZ} are defined as the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, t_{HZ}(Max.) is less than t_{LZ}(Min.) both for a given device and from device to device interconnection.

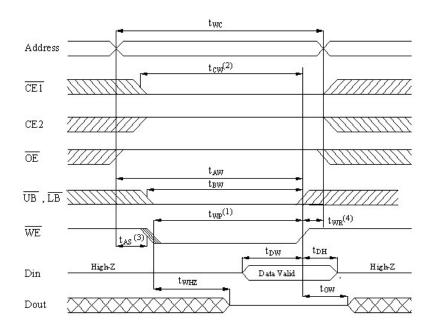
128K-Word By 16 Bit

CS16LV20493

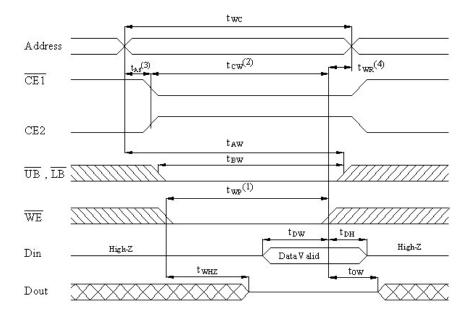
AC ELECTRICAL CHARACTERISTICS $(T_A = 0^{\circ} \sim 70^{\circ}; V_{CC} = 3.0V)$

JEDEC	Currence of	Description		55	-	11		
Name Symbol		Description	MIN	MAX	MIN	MAX	Unit	
t _{AVAX}	t _{wc}	Write Cycle Time	55		70		ns	
t _{E1LWH}	t _{CW}	Chip Select to End of Write	45		60		ns	
t _{AVWL}	t _{AS}	Address Setup Time	0		0		ns	
t _{AVWH}	t _{AW}	Address Valid to End of Write	45		60		ns	
t _{BW}	t _{BW}	/UB, /LB valid to end of write	45		60		ns	
t _{WLWH}	t _{WP}	Write Pulse Width	40		50		ns	
t _{WHAX}	t _{WR}	Write Recovery Time	0		0		ns	
t _{WLQZ}	t _{WHZ}	Write to Output in High Z		25		30	ns	
t _{DVWH}	t _{DW}	Data to Write Time Overlap	25		30		ns	
t _{WHDX}	t _{DH}	Data Hold for Write End	0		0		ns	
t _{GHQZ}	t _{OHZ}	Output Disable to Output in High Z	0	30	0	30	ns	
t _{WHOX}	t _{ow}	End of Write to Output Active	5		5		ns	

< WRITE CYCLE >

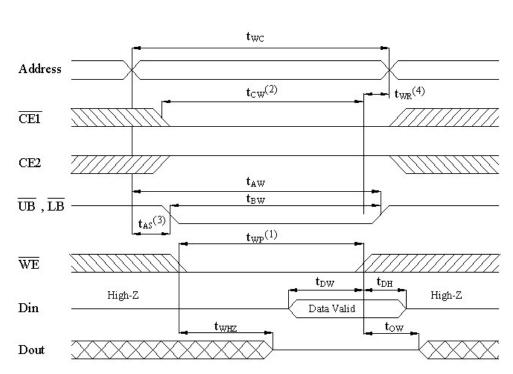


128K-Word By 16 Bit


CS16LV20493

SWITCHING WAVEFORMS (WRITE CYCLE)

WRITE CYCLE 1. (/WE CONTROLLED)


WRIRE CYCLE 2. (/CE1 AND CE2 CONTROLLED)

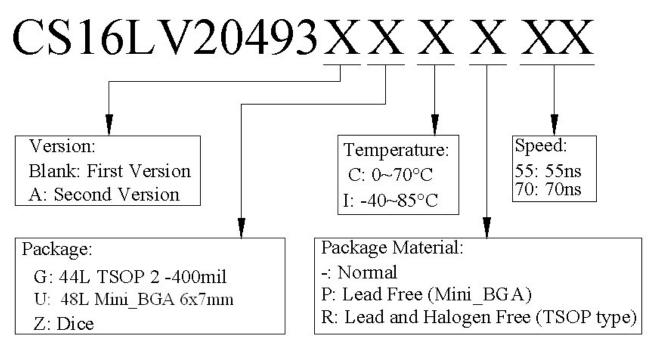
128K-Word By 16 Bit

CS16LV20493

WRIRE CYCLE 3. (/UB AND /LB CONTROLLED)

NOTES:

- A write occurs during the overlap(tWP) of low /CE1, high CE2 and low /WE. A write begins when /CE1 goes low and /WE goes low with asserting /UB and /LB for double byte operation. A write ends at the earliest transition when /CE1 goes high, CE2 goes low and /WE goes high. The t_{WP} is measured from the beginning of the write to the end of write.
- 2. t_{CW} is measured from the /CE1 going low or CE2 going low to end of write.
- 3. *t*_{AS} is measured from the address valid to the beginning of write.
- t_{WR} is measured from the end or write to the address change. TWR applied in case a write ends as /CE1 or /WE going high or CE2 going low.



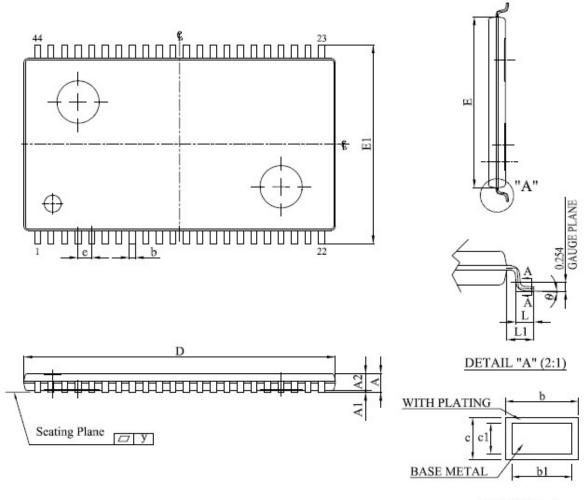
128K-Word By 16 Bit

CS16LV20493

Rev. 1.3

ORDER INFORMATION

Note: Package material code "P" & "R" meets RoHS



128K-Word By 16 Bit

CS16LV20493

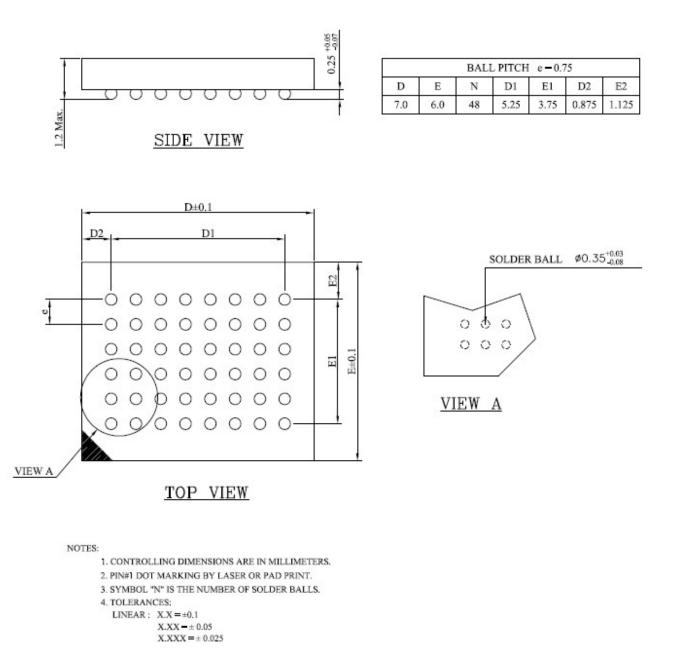
PACKAGE OUTLINE

44L TSOP2-400mil

SECTION A-A

Note: Plating thickness spec : 0.3 mil ~ 0.8 mil.

UNIT	MBOL	А	A1	A2	b	b1	с	c1	D	Е	E 1	e	L	L1	у	Θ
mm	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70	100	0°
	Nom.	1.10	0.10	1.00	-	- 2 0	1 . 	-	18.41	10.16	11.76	0.80	0.50	0.80	-	
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
inch	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275		0°
	Nom.	0.0433	0.004	0.039		-	- 127		0.725	0.400	0.463	0.0315	0.0197	0.0315		21
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	8°


Rev. 1.3

128K-Word By 16 Bit

CS16LV20493

48 ball Mini_BGA-6X7mm

